Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mycoses ; 67(1): e13667, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37914666

RESUMO

BACKGROUND: Clinical severity scores, such as acute physiology, age, chronic health evaluation II (APACHE II), sequential organ failure assessment (SOFA), Pitt Bacteremia Score (PBS), and European Confederation of Medical Mycology Quality (EQUAL) score, may not reliably predict candidemia prognosis owing to their prespecified scorings that can limit their adaptability and applicability. OBJECTIVES: Unlike those fixed and prespecified scorings, we aim to develop and validate a machine learning (ML) approach that is able to learn predictive models adaptively from available patient data to increase adaptability and applicability. METHODS: Different ML algorithms follow different design philosophies and consequently, they carry different learning biases. We have designed an ensemble meta-learner based on stacked generalisation to integrate multiple learners as a team to work at its best in a synergy to improve predictive performances. RESULTS: In the multicenter retrospective study, we analysed 512 patients with candidemia from January 2014 to July 2019 and compared a stacked generalisation model (SGM) with APACHE II, SOFA, PBS and EQUAL score to predict the 14-day mortality. The cross-validation results showed that the SGM significantly outperformed APACHE II, SOFA, PBS, and EQUAL score across several metrics, including F1-score (0.68, p < .005), Matthews correlation coefficient (0.54, p < .05 vs. SOFA, p < .005 vs. the others) and the area under the curve (AUC; 0.87, p < .005). In addition, in an independent external test, the model effectively predicted patients' mortality in the external validation cohort, with an AUC of 0.77. CONCLUSIONS: ML models show potential for improving mortality prediction amongst patients with candidemia compared to clinical severity scores.


Assuntos
Bacteriemia , Candidemia , Humanos , Escores de Disfunção Orgânica , APACHE , Estudos Retrospectivos , Candidemia/diagnóstico , Estudos de Viabilidade , Prognóstico , Aprendizado de Máquina , Curva ROC , Unidades de Terapia Intensiva
2.
Entropy (Basel) ; 24(5)2022 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-35626502

RESUMO

In the era of bathing in big data, it is common to see enormous amounts of data generated daily. As for the medical industry, not only could we collect a large amount of data, but also see each data set with a great number of features. When the number of features is ramping up, a common dilemma is adding computational cost during inferring. To address this concern, the data rotational method by PCA in tree-based methods shows a path. This work tries to enhance this path by proposing an ensemble classification method with an AdaBoost mechanism in random, automatically generating rotation subsets termed Random RotBoost. The random rotation process has replaced the manual pre-defined number of subset features (free pre-defined process). Therefore, with the ensemble of the multiple AdaBoost-based classifier, overfitting problems can be avoided, thus reinforcing the robustness. In our experiments with real-world medical data sets, Random RotBoost reaches better classification performance when compared with existing methods. Thus, with the help from our proposed method, the quality of clinical decisions can potentially be enhanced and supported in medical tasks.

3.
J Arthroplasty ; 37(1): 132-141, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34543697

RESUMO

BACKGROUND: The criteria outlined in the International Consensus Meeting (ICM) in 2018, which were prespecified and fixed, have been commonly practiced by clinicians to diagnose periprosthetic joint infection (PJI). We developed a machine learning (ML) system for PJI diagnosis and compared it with the ICM scoring system to verify the feasibility of ML. METHODS: We designed an ensemble meta-learner, which combined 5 learning algorithms to achieve superior performance by optimizing their synergy. To increase the comprehensibility of ML, we developed an explanation generator that produces understandable explanations of individual predictions. We performed stratified 5-fold cross-validation on a cohort of 323 patients to compare the ML meta-learner with the ICM scoring system. RESULTS: Cross-validation demonstrated ML's superior predictive performance to that of the ICM scoring system for various metrics, including accuracy, precision, recall, F1 score, Matthews correlation coefficient, and area under receiver operating characteristic curve. Moreover, the case study showed that ML was capable of identifying personalized important features missing from ICM and providing interpretable decision support for individual diagnosis. CONCLUSION: Unlike ICM, ML could construct adaptive diagnostic models from the available patient data instead of making diagnoses based on prespecified criteria. The experimental results suggest that ML is feasible and competitive for PJI diagnosis compared with the current widely used ICM scoring criteria. The adaptive ML models can serve as an auxiliary system to ICM for diagnosing PJI.


Assuntos
Artrite Infecciosa , Infecções Relacionadas à Prótese , Humanos , Aprendizado de Máquina , Infecções Relacionadas à Prótese/diagnóstico , Curva ROC , Estudos Retrospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...